3.1979 \(\int \frac {a d e+(c d^2+a e^2) x+c d e x^2}{(d+e x)^{3/2}} \, dx\)

Optimal. Leaf size=41 \[ 2 \sqrt {d+e x} \left (a-\frac {c d^2}{e^2}\right )+\frac {2 c d (d+e x)^{3/2}}{3 e^2} \]

[Out]

2/3*c*d*(e*x+d)^(3/2)/e^2+2*(a-c*d^2/e^2)*(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {24, 43} \[ 2 \sqrt {d+e x} \left (a-\frac {c d^2}{e^2}\right )+\frac {2 c d (d+e x)^{3/2}}{3 e^2} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)/(d + e*x)^(3/2),x]

[Out]

2*(a - (c*d^2)/e^2)*Sqrt[d + e*x] + (2*c*d*(d + e*x)^(3/2))/(3*e^2)

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
 LeQ[m, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}{(d+e x)^{3/2}} \, dx &=\frac {\int \frac {a e^3+c d e^2 x}{\sqrt {d+e x}} \, dx}{e^2}\\ &=\frac {\int \left (\frac {-c d^2 e+a e^3}{\sqrt {d+e x}}+c d e \sqrt {d+e x}\right ) \, dx}{e^2}\\ &=2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {d+e x}+\frac {2 c d (d+e x)^{3/2}}{3 e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 33, normalized size = 0.80 \[ \frac {2 \sqrt {d+e x} \left (3 a e^2+c d (e x-2 d)\right )}{3 e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)/(d + e*x)^(3/2),x]

[Out]

(2*Sqrt[d + e*x]*(3*a*e^2 + c*d*(-2*d + e*x)))/(3*e^2)

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 30, normalized size = 0.73 \[ \frac {2 \, {\left (c d e x - 2 \, c d^{2} + 3 \, a e^{2}\right )} \sqrt {e x + d}}{3 \, e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

2/3*(c*d*e*x - 2*c*d^2 + 3*a*e^2)*sqrt(e*x + d)/e^2

________________________________________________________________________________________

giac [A]  time = 0.22, size = 47, normalized size = 1.15 \[ \frac {2}{3} \, {\left ({\left (x e + d\right )}^{\frac {3}{2}} c d e^{4} - 3 \, \sqrt {x e + d} c d^{2} e^{4} + 3 \, \sqrt {x e + d} a e^{6}\right )} e^{\left (-6\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

2/3*((x*e + d)^(3/2)*c*d*e^4 - 3*sqrt(x*e + d)*c*d^2*e^4 + 3*sqrt(x*e + d)*a*e^6)*e^(-6)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 31, normalized size = 0.76 \[ \frac {2 \sqrt {e x +d}\, \left (c d e x +3 a \,e^{2}-2 c \,d^{2}\right )}{3 e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)/(e*x+d)^(3/2),x)

[Out]

2/3*(e*x+d)^(1/2)*(c*d*e*x+3*a*e^2-2*c*d^2)/e^2

________________________________________________________________________________________

maxima [A]  time = 1.16, size = 37, normalized size = 0.90 \[ \frac {2 \, {\left ({\left (e x + d\right )}^{\frac {3}{2}} c d - 3 \, {\left (c d^{2} - a e^{2}\right )} \sqrt {e x + d}\right )}}{3 \, e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

2/3*((e*x + d)^(3/2)*c*d - 3*(c*d^2 - a*e^2)*sqrt(e*x + d))/e^2

________________________________________________________________________________________

mupad [B]  time = 0.60, size = 33, normalized size = 0.80 \[ \frac {2\,\sqrt {d+e\,x}\,\left (3\,a\,e^2-3\,c\,d^2+c\,d\,\left (d+e\,x\right )\right )}{3\,e^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)/(d + e*x)^(3/2),x)

[Out]

(2*(d + e*x)^(1/2)*(3*a*e^2 - 3*c*d^2 + c*d*(d + e*x)))/(3*e^2)

________________________________________________________________________________________

sympy [A]  time = 11.48, size = 124, normalized size = 3.02 \[ \begin {cases} \frac {- \frac {2 a d e}{\sqrt {d + e x}} - 2 a e \left (- \frac {d}{\sqrt {d + e x}} - \sqrt {d + e x}\right ) - \frac {2 c d^{2} \left (- \frac {d}{\sqrt {d + e x}} - \sqrt {d + e x}\right )}{e} - \frac {2 c d \left (\frac {d^{2}}{\sqrt {d + e x}} + 2 d \sqrt {d + e x} - \frac {\left (d + e x\right )^{\frac {3}{2}}}{3}\right )}{e}}{e} & \text {for}\: e \neq 0 \\\frac {c \sqrt {d} x^{2}}{2} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)/(e*x+d)**(3/2),x)

[Out]

Piecewise(((-2*a*d*e/sqrt(d + e*x) - 2*a*e*(-d/sqrt(d + e*x) - sqrt(d + e*x)) - 2*c*d**2*(-d/sqrt(d + e*x) - s
qrt(d + e*x))/e - 2*c*d*(d**2/sqrt(d + e*x) + 2*d*sqrt(d + e*x) - (d + e*x)**(3/2)/3)/e)/e, Ne(e, 0)), (c*sqrt
(d)*x**2/2, True))

________________________________________________________________________________________